

DC MOTOR SPEED CONTROL USING

MICROCONTROLLER PIC 16F877A

EA AI CHOON

Submitted to the Faculty of Electrical Engineering

in partial fulfillment of the requirement for the degree of

Bachelor in Electrical Engineering (Instrumentation & Control)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MARCH 2005

 iii

Dedicated, in thankful appreciation for support, encouragement and

understandings to my beloved mother, father, brothers and sisters.

 iv

ACKNOWLEDGEMENT

 First and foremost, I would like to express my heartily gratitude to my

supervisor, Encik Mohamad Shukri bin Abdul Manaf for the guidance and

enthusiasm given throughout the progress of this project.

My appreciation also goes to my family who has been so tolerant and

supports me all these years. Thanks for their encouragement, love and emotional

supports that they had given to me.

I would also like to thank our Control 1 Lab Assistant, Encik Shaari bin Ani

and Encik Mad Rais bin Zakaria for their co-operations, guidance and helps in this

project.

Nevertheless, my great appreciation dedicated to my best friends Jie, Pika,

Choo Chin, Ching Chiew, Yan Chiew, Meng Yea, Say Moon and SEI member’s

batch 2000 and those whom involve directly or indirectly with this project. There is

no such meaningful word than…..Thank You So Much.

 v

ABSTRACT

Direct current (DC) motor has already become an important drive

configuration for many applications across a wide range of powers and speeds. The

ease of control and excellent performance of the DC motors will ensure that the

number of applications using them will continue grow for the foreseeable future.

This project is mainly concerned on DC motor speed control system by using

microcontroller PIC 16F877A. It is a closed-loop real time control system, where

optical encoder (built in this project) is coupled to the motor shaft to provide the

feedback speed signal to controller. Pulse Width Modulation (PWM) technique is

used where its signal is generated in microcontroller. Microcontroller acts as

proportional (P) controller with Kp =1 in this study. The PWM signal will send to

motor driver to vary the voltage supply to motor to maintain at constant speed. A

program in Visual Basic 6.0 is developed to provide a graphic user interface (GUI)

for the user to enter desired speed at computer. Besides, it also shows a graph of

motor speed versus time to let the user monitor the performance of the system easily.

Based on the result, the reading of optical encoder built is quite reliable. Through the

project, it can be concluded that microcontroller PIC 16F877A can control motor

speed at desired speed although there is a variation of load.

 vi

ABSTRAK

Motor arus terus telah menjadi satu komponen yang penting untuk aplikasi

dalam julat kuasa dan kelajuan yang tinggi. Kawalan motor arus terus yang mudah

dan prestasi yang baik akan menjamin motor arus terus untuk digunakan secara

meluas pada masa depan. Projek ini tertumpu kepada rekaaan satu sistem kawalan

kelajuan motor arus terus dengan menggunakan mikropengawal PIC 16F877A. Ia

merupakan satu kawalan gelung tutup dan masa nyata sistem, di mana pengekod

optic(yang dibina dalam projek ini) yang dipasang pada rotor akan menghantar

isyarat kelajuan suapbalik kepada pengawal. Teknik Pulse Width Modulation

(PWM) digunakan di mana isyarat ini dibekal oleh mikro pengawal. Mikropengawal

berperanan sebagai pengawal gandaan, P di dalam projek ini. Isyarat PWM akan

dihantar kepada pemacu motor untuk mengubah voltan yang dibekalkan kepada

motor supaya ia dapat dikawal pada kelajuan yang ditetapkan. Satu program ditulis

dalam Visual Basic 6.0 untuk memudahkan pengguna memasukkan kelajuan yang

dikehendaki di komputer dengan pengantaramuka grafik pengguna (GUI). Selain itu,

ia juga memaparkan satu graf kelajuan motor melawan masa untuk membolehkan

pengguna mengkaji prestasi sistem tersebut. Keputusan menunjukkan bahawa

bacaan daripada pengekod optik yang dibina adalah boleh dipercayai. Melalui

projek ini, boleh disimpulkan bahawa mikropengawal PIC 16F877A dapat mengawal

kelajuan motor pada kelajuan tetap walaupun terdapat perubahan beban.

 vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 DECLARATION OF THESIS ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENT vii

 LIST OF TABLES x

 LSIT OF FIGURES xi

 LIST OF SYMBOLS xiii

 LIST OF APPENDICES xiv

1 INTRODUCTION

 1.1 Background 1

 1.2 Objective of Project 2

 1.3 Scope of Project 2

 1.4 Outline of Thesis 2

 1.5 Summary of Works 3

 viii

2 THEORY AND LITERATURE REVIEW

 2.1 Introduction 5

 2.2 DC Motor 5

 2.3 Speed Measurement of DC Motor 6

 2.3.1 Speed Measurement by Using Tachometer 6

 2.3.2 Speed Measurement by Using Optical

Encoder

 7

 2.4 Model of Separately Excited DC motor 8

 2.5 DC motor Speed Controller 11

 2.5.1 Phase-Locked-Loop (PLL) Control 12

 2.5.2 Speed Control by Using Thyristor 13

 2.5.3 Speed Control by Using PWM and Full H

Bridge Motor Drive

 14

 2.6 Microcontroller 17

 2.7 RS232 Serial Port 18

 2.8 MPLAB IDE 20

 2.9 Visual Basic 6.0 20

3 METHODOLOGY

 3.1 Introduction 22

 3.2 Hardware Implementation 23

 3.2.1 DC Motor 24

 3.2.2 Optical Encoder 24

 3.2.3 Power Supply +5V 27

 3.2.4 Microcontroller PIC 16F877A 28

 3.2.4.1 Pulse-Width-Modulation (PWM)

in Microcontroller

 30

 3.2.4.2 RS232 Serial Communication 30

 3.2.5 DC Motor Drive 32

 3.2.6 Loading Unit LU150L 34

 ix

 3.3 Software Implementation 36

 3.3.1 Algorithm and Programming in MPLAB

IDE

 36

 3.3.1.1 Processing Explanation of Main

Program

 38

 3.3.1.2 Processing Explanation of

Interrupt Process

 43

 3.3.2 Programming in Visual Basic 6.0 48

 3.3.2.1 Reading Input from User and
Microcontroller

 49

 3.3.2.2 Plot Graph Speed versus Time 49

4 RESULT AND DISCUSSION

 4.1 Introduction 51

 4.2 Experiment: Determine Relationship of Voltage

Supply and Motor Speed

 51

 4.2.1 Procedures 52

 4.2.2 Experimental Result Analysis 53

 4.3 DC Motor Speed Control Result 55

 4.3.1 DC Motor Speed Control Result Analysis 59

 4.4 Dead Time Analysis 61

5 CONCLUSION AND RECOMMENDATION

 5.1 Conclusion 63

 5.2 Problems 64

 5.3 Recommendation 64

REFERENCES 66

APPENDICES 68

 x

LIST OF TABLES

TABLE TITLE PAGE

2.1 Types of DC Motor and their advantages and

disadvantages

 6

2.2 RS232 pin assignments (DB9 PC signal set) 19

3.1 Specification of the motor 24

3.2 Pin connection of PIC16F877A for DC motor speed

control system

 29

3.3 Pin function of chip L298 32

4.1 Relationship of voltage supply and motor speed 53

 xi

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 Project overview 3

1.2 Gantt Chart of the project schedule for semester 1 4

1.3 Gantt Chart of the project schedule for semester 2 4

2.1 Sample disc of encoder 7

2.2 Basic schematic circuit of optical encoder 8

2.3 Model of separately excited DC motor 9

2.4 Basic block diagram for DC Motor speed control 11

2.5 Basic flow chart of DC motor speed control 11

2.6 Phase-locked loop control system 12

2.7 Block diagram of DC Motor speed control by using

thyristor

 13

2.8 Simple motor circuit 14

2.9 PWM signal 15

2.10 Relation of supply voltage with motor speed 16

2.11 Full H bridge motor drive 16

2.12 Handshake looping a PC serial connector 19

3.1 Block diagram of DC motor speed control system 22

3.2 Picture of the project 23

3.3 24V DC motor 24

3.4 Optical encoder 26

3.5 IC LM7805 27

3.6 Schematic circuit of +5V power supply 27

3.7 Schematic circuit of PIC16F877A 29

 xii

3.8 NRZ (Non Return to Zero) format data 30

3.9 Connection between D9 Female serial port, MAX232 and

PIC16F877A

 31

3.10 Bi-direction of DC motor speed control 33

3.11 Application of vary load by using Loading Unit LU150L 35

3.12 Flow chart of microcontroller’s main program 37

3.13 Flow chart of check noise function 38

3.14 PWM output 39

3.15 Simplified PWM block diagram 39

3.16 Timer1 block diagram 41

3.17 USART transmit block diagram 42

3.18 USART receive block diagram 42

3.19 Flow chart of microcontroller’s interrupt process 47

3.20 Introduction form 48

3.21 Main program form 48

3.22 Flow chart of program in Visual Basic 6.0 50

4.1 Experiment with tachometer 51

4.2 Experiment with optical encoder 52

4.3 Graph of speed versus voltage supply 54

4.4 DC motor running at speed 190.74 rpm 55

4.5 DC motor running at speed 572.21 rpm 56

4.6 DC motor running at speed 762.95 rpm 56

4.7 DC motor running at speed 953.69 rpm 57

4.8 DC motor running at speed 1144.43 rpm 57

4.9 DC motor running at speed 1716.64 rpm 58

4.10 DC motor running at speed 1907.38 rpm 58

4.11 Types of oscillatory response 59

4.12 Free body diagram of the disc 60

4.13 Graph of dead time versus motor speed 61

 xiii

LIST OF SYMBOLS

KE - A constant based on motor construction

φ - Magnetic flux

If - Field current

Ia - Armature current

Rf - Field resistor

Lf - Field inductor

Ra - Armature resistor

La - Armature inductor

Kv - Motor constant

Kt - Torque constant

Td - Developed torque

TL - Load torque

B - Viscous friction constant

J - Inertia of the motor

w - Motor speed

α - Firing angle of thyristor

ton - Time ON of switches

T - Period

s - Standard deviation

rpm - Rotation per minute

 xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Program in Microcontroller PIC 16F877A for DC

Motor Speed Control

68

B Source Code of Visual Basic 6.0 for DC Motor

Speed Control Using Microcontroller PIC 16F877A

74

 xv

CHAPTER 1

INTRODUCTION

1.1 Background

Direct current (DC) motors have variable characteristics and are used

extensively in variable-speed drives. DC motor can provide a high starting torque

and it is also possible to obtain speed control over wide range. Why do we need a

speed motor controller? For example, if we have a DC motor in a robot, if we just

apply a constant power to each motor on a robot, then the poor robot will never be

able to maintain a steady speed. It will go slower over carpet, faster over smooth

flooring, slower up hill, faster down hill, etc. So, it is important to make a controller

to control the speed of DC motor in desired speed.

DC motor plays a significant role in modern industrial. These are several

types of applications where the load on the DC motor varies over a speed range.

These applications may demand high-speed control accuracy and good dynamic

responses.

In home appliances, washers, dryers and compressors are good examples. In

automotive, fuel pump control, electronic steering control, engine control and electric

vehicle control are good examples of these. In aerospace, there are a number of

applications, like centrifuges, pumps, robotic arm controls, gyroscope controls and so

on.

 2

1.2 Objective of Project

The main core of this project is to design a speed control system of DC Motor

by using microcontroller. This system will be able to control the DC motor speed at

desired speed regardless the changes of load.

1.3 Scope of Project

In order to achieve the objective of the project, there are several scope had

been outlined. The scope of this project includes using MPLAB IDE to program

microcontroller PIC 16F877A, build hardware for the system, and interface the

hardware to computer by using RS232 serial port communication. Last but not least,

a graph of speed versus time is obtained by using Visual Basic 6.0 at computer to

observe the performance of the system.

1.4 Outline of Thesis

This thesis consists four chapters. In first chapter, it discuss about the

objective and scope of this project as long as summary of works. While Chapter 2

will discuss more on theory and literature reviews that have been done. It well

discuss about types of motor, various kind of speed measurement and controllers

(thyristor, phase-lock loop and PWM technique) that can be used to control the speed

of the motor.

In Chapter 3, the discussion will be on the methodology hardware and

software implementation of this project. The result and discussion will be presented

in Chapter 4. Last but not least, Chapter 5 discusses the conclusion of this project

and future work that can be done.

1.5. Summary of Works

Implementation and works of the project are summarized into the flow chart

as shown in Figure 1.1. Gantt charts as shown in Figure 1.2 and Figure 1.3 show the

detail of the works of the project that had been implemented in the first and second

semester.

DC Motor controller
Design

Interfacing with computer
and controller

Control DC motor speed

Real Speed detection

Feedback and display real
speed on screen computer

VB programming
writing for input desired
speed and display graph

speed versus time

Speed error correction

Figure 1.1 Project overview

3

1. Brief idea

2. Literature and theoritical study

3. Study MPLAB

4. Hardware design

5. Order part of hardware

6. Construction of hardware

7. Report preparation

8. Presentation

St
ud

y
W

ee
k

1 2 3 4 5 6 7 138 9 10 11

Se
m

es
te

r B
re

ak

Ex
am

 W
ee

k

16 17 1812 14 15 Week
Activities

Figure 1.2 Gantt Chart of the project schedule for semester 1

1. Literature and theoritical study

2. Construction of hardware

3. Programming for plotting graph

4. Interfacing with computer

5. Modification and evaluation

6. Results, discussion & conclusion

7. Presentation

8. Report preparation

Se
m

es
te

r b
re

ak

16 1712 14 158 9 10 13111 2 3 4 5 6 7 Week
Activities

Figure 1.3 Gantt Chart of the project schedule for semester 2

CHAPTER 2

THEORY AND LITERATURE REVIEW

2.1 Introduction

This chapter includes the study of different types of DC motors, speed

measurement of DC motor, model of separately excited DC motor, several types of

DC motor speed controller. It also brief discuss about microcontroller, RS232 serial

port, MPLAB IDE and Visual Basic 6.0.

2.2 DC Motor

 There are several types of DC motors that are available. Their advantages,

disadvantages, and other basic information are listed below in the Table 2.1.

 6

Table 2.1 Advantages and disadvantages of various types of DC motor.

Type Advantages Disadvantages
Stepper Motor Very precise speed and

position control. High
Torque at low speed.

Expensive and hard to find.
Require a switching control
circuit

DC Motor w/field coil Wide range of speeds and
torques. More powerful than
permanent magnet motors

Require more current than
permanent magnet motors,
since field coil must be
energized. Generally heavier
than permanent magnet
motors. More difficult to
obtain.

DC permanent magnet
motor

Small, compact, and easy to
find. Very inexpensive

Generally small. Cannot vary
magnetic field strength.

Gasoline
(small two stroke)

Very high power/weight
ratio. Provide Extremely high
torque. No batteries required.

Expensive, loud, difficult to
mount, very high vibration.

2.3 Speed Measurement of DC Motor

 To start with this project, we need a device that will measure the speed of the

motor shaft. There are several methods which can use to measure the speed of

motor. Here, we will only discuss about speed measurement by using tachometer

and optical encoder.

2.3.1 Speed Measurement by Using Tachometer

 Tachometer is an instrument that measure speed motor based on concept of

back EMF induced in motor when it is running. The EMF is voltages appear on the

commutator segments caused by rotated in the magnetic field by some external force.

 7

The magnitude of the EMF is given by [1],

NKEMF Eφ= (2.1)

 where KE = a constant based on motor construction

 φ = magnetic flux

 N = speed of motor (in rpm)

The actual relationship between motor speed and EMF follows and is derived

from Equation 2.1,

φEK
EMFN = (2.2)

 Thus, the motor speed is directly proportional to the EMF voltage ad

inversely proportional to the field flux. For permanent magnet DC motor, when the

EMF measured is increases, the speed of the motor is also increases with the gain.

So, the speed of motor can be measured by measuring the back EMF using

tachometer.

2.3.2 Speed Measurement by Using Optical Encoder

 The best way to measure speed is to fit an optical encoder. This shines a

beam of light from a transmitter across a small space and detects it with a receiver

the other end. If a disc is placed in the space, which has slots cut into it, then the

signal will only be picked up when a slot is between the transmitter and receiver. An

example of a disc is shown as Figure 2.1.

Figure 2.1 Sample disc of encoder

 8

The encoder transmitter must be supplied with a suitable current, and the

receiver biased as Figure 2.2.

Figure 2.2 Basic schematic circuit of optical encoder

This will have an output which swings to +5v when the light is blocked, and

about 0.5 volts when light is allowed to pass through the slots in the disc. The

frequency of the output waveform is given by,

60
rpmNfout

×
= (2.3)

 where fout = frequency of output waveform

 rpm = speed in revolutions per minutes

 N = number of slots at disc

 So, from Equation 2.3, the speed of DC motor in rpm is given by,

N
60frpm out ×= (2.4)

2.4 Model of Separately Excited DC motor

 Figure 2.3 shows a model of separately excited DC motor [1]. When a

separately excited motor is excited by a field current of If and an armature current of

Ia flows in the circuit, the motor develops a back EMF and a torque to balance the

load torque at a particular speed. The If is independent of the Ia. Each winding are

 9

supplied separately. Any change in the armature current has no effect on the field

current. The If is normally much less than the Ia. The relationship of the field and

armature are shown in Equation 2.5.

Figure 2.3 Model of separately excited DC motor

Instantaneous field current:

dt
di

LiRv f
ffff += (2.5)

where Rf and Lf are the field resistor and inductor respectively.

Instantaneous armature current:

g
a

aaaa e
dt
di

LiRv ++= (2.6)

where Ra and La are the armature resistor and inductor respectively.

The motor back EMF which is also known as speed voltage is expressed as

 fvg wiKe = (2.7)

where Kv is the motor constant (in V/A-rad/s) and w is the motor

speed (rad/s).

The torque developed by the motor is

ftd iKT φ= (2.8)

where (Kt=Kv) is the torque constant (in V/A-rad/s).

 10

Sometimes it is written as:

atd iKT φ= (2.9)

For normal operation, the developed torque must be equal to the load torque

plus the friction and inertia, i.e.:

Ld TBw
dt
dwJT ++=

 (2.10)

 where B = viscous friction constant (N.m/rad/s)

 TL = load torque (N.m)

 J = inertia of the motor (kg.m2)

 Under steady-state operations, a time derivative is zero. Assuming the motor

is not saturated.

For field circuit,

fff RIV = (2.11)

 The back EMF is given by:

fvg wIKE = (2.12)

The armature circuit,

fvaagaaa wIKRIERIV +=+= (2.13)

 The motor speed can be easily derived:

fv

aaa

IK
RIV

w
−

= (2.14)

If Ra is a small value (which is usual), or when the motor is lightly loaded, i.e.

Ia is small,

fv

a

IK
V

w = (2.15)

 That is if the field current is kept constant, the speed motor speed depends on

the supply voltage. These observation leads to the application of variable DC

voltage to control the speed and torque of DC motor.

 11

2.5 DC motor Speed Controller

 For precise speed control of servo system, closed-loop control is normally

used. Basically, the block diagram and the flow chart of the speed control are shown

in Figure 2.4 and Figure 2.5 respectively. The speed, which is sensed by analog

sensing devices (e.g., tachometer) is compared with the reference speed to generate

the error signal and to vary the armature voltage of the motor.

Actual
Speed Motor DC Controller

Figure 2.4 Basic block diagram for DC Motor speed control

Figure 2.5 Basic flow chart of DC motor speed control

There are several controllers that can used to control the speed of the motor

such as by using thyristor, phase-locked-loop control, chopper circuit, Fuzzy Logic

Controller and etc. Here, we will discuss only at the speed control system by using

thyristor, phase-locked loop and PWM technique.

Driver Motor

Speed
sensor

Feedback
Speed

Start

Start Motor drive

Detect motor speed

Speed < Ref?
Yes

No
Acceleration Deceleration

 12

2.5.1 Phase-Locked-Loop (PLL) Control

 The block diagram of a converter-fed dc motor drive with phase-locked-loop

control is shown in Figure 2.6. In a phase-locked-loop (PLL) control system, the

motor speed is converted to a digital pulse train by using a speed encoder. The

output of the encoder acts as the speed feedback signal of frequency f0.

The phase detector compares the reference pulse train (or frequency) fr with

the feedback frequency f0 and provides a pulse-width-modulated (PWM) output

voltage Ve that is proportional to the difference in phases and frequencies of the

reference and feedback pulse trains. The phase detector (or comparator) is available

in integrated circuits. A low-pass loop filter converts the pulse train Ve to continuous

dc level Vc, which varies the output of the power converter and in turn the motor

speed.

fi

Figure 2.6 Phase-locked loop control system

 When the motor runs at the same speed as the reference pulse train, the two

frequencies would be synchronized (or locked) together with a phase difference. The

output of the phase detector would be a constant voltage proportional to the phase

difference and the steady-state motor speed would be maintained at a fixed value

irrespective of the load on the motor.

Any disturbances contributing to the speed change would result in a phase

difference and the output of the phase detector would respond immediately to vary

the speed of the motor in such direction and magnitude as to retain the locking of the

reference and feedback frequencies. The response of the phase detector is very fast.

Low Pass
Filter

Converter,
K2

Speed
Encoder

Vc Va Ve

f0

w Phase
detector

DC
motor

 13

As long as the two frequencies are locked, the speed regulation should ideally be

zero.

In journals by Christopher A. Adkins and Moore respectively, it has

developed a model for the components of PLL servo control system using both linear

and nonlinear techniques [2], [3]. However, PLL controlled motor drives have the

following shortcomings.

i. PLL-controlled motor system tend to be unstable for low-speed operation

ii. PLL-controlled motor systems have large response time.

iii. PLL controlled motor systems may get out of synchronization for an

abrupt load variation.

2.5.2 Speed Control by Using Thyristor

 Figure 2.8 shows the block diagram of DC motor speed control by using

thyristor. The thyristor is used to supply a variable DC voltage to motor, thus it can

control the speed of motor (Equation 2.15). The average output of voltage is given by

(α
π

cos1
2

+= m
ave

V
V) (2.16)

 where Vm = peak voltage of voltage supply of thyristor and

 α = firing angle of thyristor

Reference
Frequency

Figure 2.7 Block diagram of DC Motor speed control by using thyristor

Frequency
or Phase

Comparator

Firing
Circuit

Thyristor,
SCR

DC
Motor

Speed Sensor

Load

 14

From Equation 2.16, by controlling the firing angle, α, the average of output

DC voltage can be varied. If the motor speed is low, the speed sensor frequency will

be below the reference frequency. The frequency difference produces a change in

the firing circuit that causes the thyristor, SCR to fire sooner (firing angle, α is

reduced). There is a resulting increase in motor speed which brings the output speed

back up to the value which is equal to the reference signal.

Conversely, if the speed sensor output frequency is above the reference, then

the firing circuit will be modified to allow the SCR to conduct for a shorter period of

time, the decrease in conduction reduces the DC motor speed.

 From review, this method has been used by P.C. Sen and M.L. MacDonald in

their research [4].

2.5.3 Speed Control by Using PWM and Full H Bridge Motor Drive

Figure 2.8 Simple motor circuit

Let us consider a simple circuit that connects a battery as power supply

through a switch MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) as

shown in Figure 2.8 [5]. When the switch is closed, the motor sees 12 Volts, and

when it is open it sees 0 Volts. If the switch is open for the same amount of time as it

is closed, the motor will see an average of 6 Volts, and will run more slowly

accordingly.

 15

This on-off switching is performed by power MOSFETs. A MOSFET

(Metal-Oxide-Semiconductor Field Effect Transistor) is a device that can turn very

large currents on and off under the control of a low signal level voltage.

The average of voltage that supply to DC motor is given by,

 in
on

ave V
T
t

V ×= (2.17)

 where Vave = average voltage supply to DC motor

 ton = time ON of switches

 T = period of PWM

 DC
T
ton = , duty cycle

Figure 2.9 PWM signal

As the amount of time that the voltage is on increases compared with the

amount of time that it is off, the average speed of the motor increases and vice versa.

The time that it takes a motor to speed up and slow down under switching

conditions is depends on the inertia of the rotor (basically how heavy it is), and how

much friction and load torque there is. Figure 2.10 shows the speed of a motor that is

being turned on and off fairly slowly:

 16

Figure 2.10 Relation of supply voltage with motor speed

We can see that the average speed is around 150 rpm, although it varies quite

a bit. If the supply voltage is switched fast enough, it won’t have time to change

speed much, and the speed will be quite steady. This is the principle of switch mode

speed control. Thus the speed is set by PWM – Pulse Width Modulation.

A full bridge circuit is shown in the diagram below. Each side of the motor

can be connected either to battery positive, or to battery negative. Only one

MOSFET on each side of the motor must be turned on at any one time otherwise

they will short out the battery and burn out.

Figure 2.11 Full H bridge motor drive

 17

To make the motor go forwards, Q4 is turned on, and Q1 has the PWM signal

applied to it. Meanwhile, to make the motor go backwards, Q3 is turned on, and Q2

has the PWM signal applied to it:

From review, this method has been used by Abu Zaharin Ahmad and Mohd

Nasir Taib in their study [6].

2.6 Microcontroller

Microcontrollers must contain at least two primary components – random

access memory (RAM), and an instruction set. RAM is a type of internal logic unit

that stores information temporarily. RAM contents disappear when the power is

turned off. While RAM is used to hold any kind of data, some RAM is specialized,

referred to as registers. The instruction set is a list of all commands and their

corresponding functions. During operation, the microcontroller will step through a

program (the firmware). Each valid instruction set and the matching internal

hardware that differentiate one microcontroller from another [7].

Most microcontrollers also contain read-only memory (ROM), programmable

read-only memory (PROM), or erasable programmable read-only memory

(EPROM). Al1 of these memories are permanent: they retain what is programmed

into them even during loss of power. They are used to store the firmware that tells

the microcontroller how to operate. They are also used to store permanent lookup

tables. Often these memories do not reside in the microcontroller; instead, they are

contained in external ICs, and the instructions are fetched as the microcontroller

runs. This enables quick and low-cost updates to the firmware by replacing the

ROM.

Where would a microcontroller be without some way of communicating with

the outside world? This job is left to input/output (I/O) port pins. The number of I/O

pins per controllers varies greatly, plus each I/O pin can be programmed as an input

or output (or even switch during the running of a program). The load (current draw)

 18

that each pin can drive is usually low. If the output is expected to be a heavy load,

then it is essential to use a driver chip or transistor buffer.

Most microcontrollers contain circuitry to generate the system clock. This

square wave is the heartbeat of the microcontroller and all operations are

synchronized to it. Obviously, it controls the speed at which the microcontroller

functions. All that needed to complete the clock circuit would be the crystal or RC

components. We can, therefore precisely select the operating speed critical to many

applications.

To summarize, a microcontroller contains (in one chip) two or more of the

following elements in order of importance [8]:

i. Instruction set

ii. RAM

iii. ROM,PROM or EPROM

iv. I/O ports

v. Clock generator

vi. Reset function

vii. Watchdog timer

viii. Serial port

ix. Interrupts

x. Timers

xi. Analog-to-digital converters

xii. Digital-to-analog converters

2.7 RS232 Serial Port

 RS232 is a popular communications protocol for connecting modems and

data acquisition devices to computers. RS232 devices can be plugged straight into

the computer's serial port (also known as the COM or Comms port). Examples of

 19

data acquisition devices include GPS receivers, electronic balances, data loggers,

temperature interfaces and other measurement instruments.

 A nine pin D plug has become the standard fitting for the serial ports of PCs.

The pin connections used are as shown in Table 2.2. The connector on the PC has

male pins, therefore the mating cable needs to terminate in a DB9/F (Female pin)

connector.

Table 2.2 RS232 pin assignments (DB9 PC signal set)

Pin 1 Input DCD Data Carrier Detect

Pin 2 Input RXD Received Data

Pin 3 Output TXD Transmitted Data

Pin 4 Output DTR Data Terminal Ready

Pin 5 Signal Ground

Pin 6 Input DSR Data Set Ready

Pin 7 Output RTS Request To Send

Pin 8 Input CTS Clear To Send

Pin 9 Input RI Ring Indicator

 Normal PC hardware might well run with just Tx, Rx and Ground connected,

most driver software will wait forever for one of the handshaking lines to go to the

correct level. Depending on the signal state it might sometimes work, other times it

might not. The reliable solution is to loop back the handshake lines if they are not

used [9].

Figure 2.12 Handshake looping a PC serial connector

 20

When the lines are handshake looped, the RTS output from the PC

immediately activates the CTS input - so the PC effectively controls its own

handshaking.

2.8 MPLAB IDE

MPLAB IDE is a Windows-based Integrated Development Environment for

the Microchip Technology Incorporated PIC microcontroller (MCU) and dsPIC

digital signal controller (DSC) families [10]. In the MPLAB IDE, we can:

i. Create source code using the built-in editor.

ii. Assemble, compile and link source code using various language tools.

An assembler, linker and librarian come with MPLAB IDE. C compilers

are available from Microchip and other third party vendors.

iii. Debug the executable logic by watching program flow with a simulator,

such as MPLAB SIM, or in real time with an emulator, such as MPLAB

IDE. Third party emulators that work with MPLAB IDE are also

available.

iv. Make timing measurements.

v. View variables in Watch windows.

vi. Program firmware into devices with programmers such as PICSTART

Plus or PRO MATE II.

2.9 Visual Basic 6.0

There are literally hundreds of programming languages. Each was developed

to solve particular type of problem. Most traditional languages, such as BASIC, C,

COBOL, FORTRAN, and Pascal are considered procedural languages. That is, the

program specifies the exact sequence of all operations. Program logic determines the

next instruction to execute in response to conditions and user request.

 21

 The newer language, such as C++ and VISUAL BASIC, use a different

approach: object-oriented programming (OOP) and event driven programming.

Microsoft refers to Visual Basic as an event driven programming language, which

has many elements of an object oriented language such as Java. In the event driven

model, programs are no longer procedural; they don’t follow a sequential logic. So,

there is no need to take control and determine the sequence of execution.

As the world turn to graphic user interface (GUI), visual basic is one of the

languages that changes to accommodate the shift. Visual Basic is designed to allow

the program run under the windows without the complexity generally associated with

windows programming [11]. The designed screen can holds standard windows

button such as command buttons, check boxes, option buttons, text boxes, and so on.

Each of these windows object, operates as expected, producing a “standard”

windows user interface.

Visual Basic that recently appears as one of the most popular programming

language is chose. It provided standard windows object and graphic user interface

that will make the program become user friendly.

 23

CHAPTER 3

METHODOLOGY

3.1 Introduction

 In this project, microcontroller will be used as the controller to control DC

motor speed at desired speed. The block diagram of the system is shown in Figure

3.1. It is a closed-loop with real time control system.

Motor DC Microcontroller Actual
speed

Driver Motor

Figure 3.1 Block diagram of DC motor speed control system

 The actual speed of DC motor will be measured by encoder and feedback to

microcontroller. In microcontroller, it will calculate the error between the desired

speed with the actual speed. The error will determine duty cycle of pulse-width-

modulation (PWM) in microcontroller. Then, the duty cycle will send to DC motor

driver either accelerate or decelerate DC motor to maintain it at desired speed.

Encoder

PC

Feedback speed

For speed
display

 23

 Figure 3.2 shows the picture of the project. The project is divides into two

parts that are software and hardware implementation. Each part of the project will

discuss in the following section.

Figure 3.2 Picture of the project

3.2 Hardware Implementation

This section will discuss about components that had been used included DC

motor, optical encoder, power supply 5V, microcontroller PIC 16F877A, pulse-

width-modulation (PWM) and RS232 serial communication of microcontroller, DC

Motor drive and loading unit LU150L

 24

3.2.1 DC Motor

 Figure 3.3 shows the DC motor that will be used in this project. It is a

permanent magnet 24V DC motor. The specification of this motor is shown in Table

3.1.

Figure 3.3 24V DC motor

Table 3.1 Specification of the motor

Manufacturer Tohoku Ricoh CO. Ltd
Voltage rated 24V
Power 55W
Type 7K100012

3.2.2 Optical Encoder

 In this project, an optical encoder will be used to measure the DC motor

speed. The fundamental reason for the superiority of this system is that the optical

encoder used as the velocity sensor, is capable of much better performance than the

generator type of tachometer (by using back EMF that discussed in section 2.2.1).

When the optical disc is properly mounted on the motor shaft, it generates a

frequency directly proportional to motor speed. Changes in gap, temperature, and

 25

magnet strength simply have no effect on the output of the optical tachometer. By

contrast, an analog tachometer is directly affected by all the problems listed above.

 The encoder in the market is very expensive. In order to reduce the cost of

the project, an optical encoder is built. Figure 3.4a and Figure 3.4b show the basic

configuration and the schematic of the optical encoder in action respectively [7].

The speed accuracy over fractions of a revolution depends on the quality of

the optical encoder. The DC motor has an optical disc (made by cardboard) mounted

on its shaft. The disc has N radial lines on its surface. In this project, we will make

four slots on the disc (N=4). This will give a resolution of 1/4 in one rotation. An

LED (light emitting diode) as transmitter is put at one side of the disc and a

photodiode, as receiver is fixed on the other side of the disc. Chip OPT 101 is

selected as photodiode in this project.

 To make sure the output waveform in digital signal (High/Low) which is

readable by microcontroller, Chip LM324 is used as a comparator. When the Vout of

photodiode is less than Vref, the output of LM324 will be 0V (Low) and when the

Vout is greater than Vref, the output of LM 324 will be 5V (High). The output signal

form LM324 has a frequency which is given by Equation 2.3. Then, the output

signal will be sent to microcontroller as representation of actual speed.

 26

(a)

(b)

(c)

Figure 3.4 Optical encoder (a) Basic configuration (b)Schematic circuit

 (c)Picture

 27

3.2.3 Power Supply +5V

Most digital logic circuits and processors need a +5 volt power supply. To

use these parts we need to build a regulated +5 volt source. Usually we start with an

unregulated power supply ranging from 9 volts to 24 volts DC.

To make a +5 volt power supply, we use a LM7805 voltage regulator IC

(Integrated Circuit). The IC is shown below.

Figure 3.5 IC LM7805

Sometimes the input supply line may be noisy. To help smooth out this noise

and get a better 5 volt output, capacitors is usually added to the circuit.

Figure 3.6 Schematic circuit of +5V power supply

 28

3.2.4 Microcontroller PIC 16F877A

The microcontroller acts like the brain of the DC motor speed control system.

The microcontroller chip that has been selected for the purpose of controlling the

speed of DC motor is PIC16F877A manufactured by Microchip. This chip is selected

based on several reasons [8]:

i. Its size is small and equipped with sufficient output ports without

having to use a decoder or multiplexer.

ii. Its portability and low current consumption.

iii. It has PWM inside the chip itself which allow us to vary the duty

cycle of DC motor drive.

iv. It is a very simple but powerful microcontroller. Users would only

need to learn 35 single word instructions in order to program the chip.

v. It can be programmed and reprogrammed easily (up to 10,000,000

cycles) using the universal programmer in robotics lab.

Refer to Table 3.2 for the pin connection of PIC16F877A in DC Motor speed

control system. Pins not stated in the table are not used and left hanging. Figure 3.7

shows the schematic circuit of microcontroller PIC16F877A. At the beginning,

microcontroller will receive desired speed from PC through serial port. The detected

motor speed from optical encoder will feedback to microcontroller through RA0 of

PIC16F877A. The microcontroller will operate as it programmed (detail program at

section 3.3.1) to produce a new duty cycle (from CCP2) that proportional to the error

speed. Thus, average of voltage supply from DC motor drive can be varied in order

to maintain the speed at desired value.

 29

Table 3.2 Pin connection of PIC16F877A for DC motor speed control system

Pin Name Pin No. Description Application

VDD 11,32 Positive Supply
(+5V) Power Supply to chip

VSS 12,31 Ground Reference Ground Reference

OSC1 13

OSC2 14

MCLR\ 1 Reset Input Always connected to +5V

RA0 2 Input/Output pin
Input of Vout from LM324

as speed counter

RB1 34

RB2 35

CCP2 16
Output of duty

cycle(PWM) to control
motor speed

Capture/Compare/P
WM

For oscillator or
resonator

Connected to resonator
20MHz with 22pF

Input/Output pin Output to control
CW/CCW of left motor

Figure 3.7 Schematic circuit of PIC16F877A

 30

3.2.4.1 Pulse-Width-Modulation (PWM) in Microcontroller

 The Pulse-Width-Modulation (PWM) in microcontroller is used to control

duty cycle of DC motor drive.

 PWM is an entirely different approach to controlling the speed of a DC

motor. Power is supplied to the motor in square wave of constant voltage but

varying pulse-width or duty cycle. Duty cycle refers to the percentage of one cycle

during which duty cycle of a continuous train of pulses. Since the frequency is held

constant while the on-off time is varied, the duty cycle of PWM is determined by the

pulse width. Thus the power increases duty cycle in PWM.

The expression of duty cycle is determined by,

%100% ×=
T
t

Dutycylcle on (3.1)

 Basically, the speed of a DC motor is a function of the input power and drive

characteristics. While the area under an input pulse width train is measure of the

average power available from such an input.

3.2.4.2 RS232 Serial Communication

SCI is an abbreviation for Serial Communication Interface and, as a special

subsystem of microcontroller PIC16F877A. It provides RS232 serial communication

with PC easily.

Figure 3.8 NRZ (Non Return to Zero) format data

 31

As with hardware communication, we use standard NRZ (Non Return to Zero)

format also known as 8 (9)-N-1, or 8 or 9 data bits, without parity bit and with one

stop bit. Free line is defined as the status of logic one. Start of transmission - Start

Bit, has the status of logic zero. The data bits follow the start bit (the first bit is the

low significant bit), and after the bits we place the Stop Bit of logic one. The

duration of the stop bit 'T' depends on the transmission rate and is adjusted according

to the needs of the transmission. For the transmission speed of 9600 baud, T is

104µs.

In order to connect a microcontroller to a serial port on a computer, we need

to adjust the level of the signals so communicating can take place. The signal level

on a PC is -10V for logic zero, and +10V for logic one. Since the signal level on the

microcontroller is +5V for logic one and 0V for logic zero, we need an intermediary

stage that will convert the levels. One chip specially designed for this task is

MAX232. This chip receives signals from -10 to +10V and converts them into 0 and

5V. The circuit for this interface is shown in the Figure 3.9

Figure 3.9 Connection between D9 Female serial port, MAX232 and PIC16F877A

 32

3.2.5 DC Motor Drive

 If a DC motor is connected directly to the voltage supply, the constant power

will be supplied to the DC motor all the time. Due to the constant power to motor,

the speed of motor will slow down when the load is heavier and speed up when the

load is lighter. So, DC motor drive is needed where we can control the magnitude of

supply voltage in order to control the speed of DC motor.

 The DC motor drive that will be used in this project is a dual full bridge

driver, chip L298. The operating supply voltage of chip L298 is up to 46V and the

total DC current up to 4A. Table 3.3 shows function of each pin of chip L298.

The time to enable the chip L298 will be determined by the duty cycle pulse

that sent from PWM in microcontroller. The average of voltage that supply to DC

motor is given by Equation 2.17.

Table 3.3 Pin function of chip L298

Pin Name Function
Between this pin and ground is connected the sense resistor to
control the current of the load.
Outputs of the Bridge A; the current that flows through the load
connected between these two pins is monitored at pin 1.
Supply Voltage for the Power Output Stages.
A non-inductive 100nF capacitor must be connected between this
pin and ground.

5;7 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.
TTL Compatible Enable Input: the L state disables the bridge A
(enable A) and/or the bridge B (enable B).

8 GND Ground.
Supply Voltage for the Logic Blocks. A100nF capacitor must be
connected between this pin and ground.

10;12 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.
Outputs of the Bridge B. The current that flows through the load
connected between these two pins is monitored at pin 15.

1;15 Sense A; Sense B

2;3 Out 1; Out 2

13;14 Out 3; Out 4

4 Vs

6;11 Enable A; EnableB

9 Vss

 Figure 3.10 shows the schematic circuit of L298 with a 24V DC motor. To

supply the voltage to motor through L298, it should be enabled by +5V at pin 6

(Enable A) or pin 11 (Enable B). If the chip is disabled, Vave is zero, there is no

 33

voltage supply to motor, the motor will stop running. In this project, the duty cycle

of PWM will sent to Ven to drive the motor.

 From table, we know that the motor will continuous running (as long as the

motor is not overloaded) when the C and D of L298 have different input. When

input of C (pin 10) is High (H), D (pin12) is Low (L), the motor will run in forward

direction and vice versa. When both C and D have same input (H/L), the motor will

stop running.

Figure 3.10 Bi-direction of DC motor speed control

So, to make sure the motor is running all the time, the different input have to

sent to C and D. In this project, the motor is running all the time in forward direction

by receiving C=H (RB1) and D=L (RB2) from microcontroller during the

initialization of the program. (detail in part 3.3.1.1(a)).

 34

3.2.6 Loading Unit LU150L

 For DC motor speed control with application of varies loads, a loading unit

LU150L is used. It has two U shape magnets with a small space between it. Without

LU150L, the disc that fixed at the motor shaft can run smoothly at the constant

speed.

 With the presence of LU150L when the motor is running, the disc will cut the

magnetic flux field and it becomes a load to the motor. Thus, motor will slow down.

The position of the magnets have been defined as no load, normal load and overload

condition as shown in Figure 3.11. In this project, a controller has been designed to

maintain speed back to the desired speed by using microcontroller.

 35

(a)

(b) (c)

(d)

Figure 3.11 Application of vary load by using Loading Unit LU150L

(a) Loading Unit LU150L (b) No load condition (c) Normal load condition

 (d) Overload condition

 36

3.3 Software Implementation

 For software implementation, MPLAB IDE is used to program

microcontroller in assembly language. Besides, Visual Basic 6.0 is used for user

interface purpose and for monitoring the speed response of the system.

3.3.1 Algorithm and Programming in MPLAB IDE

Microcontroller acts as brain of the whole DC motor speed control system. It

will receive the desired speed from user through PC that interface with RS232 serial

port. The actual speed will be compared with the desired speed and the correction

will be done by microcontroller to always maintain the DC motor speed at the

desired speed.

An algorithm has to be developed to make the microcontroller to read the

input and respond accordingly. Therefore, the algorithm is established and

represented by a flowchart in Figure 3.12 and Figure 3.13. These flowcharts are then

translated into assembly language and compiled using MPLAB, the PIC16F877A

software development tool. The program in assembly language can be referred in

Appendix A.

There are two parts of the program which are main program and interrupt

program. The microcontroller will always run the main program until there is an

interrupt occurred. When microcontroller receives an interrupt flag, then it will jump

to interrupt process.

 37

Start

Initialization
• Initialize PORT
• Initialize PWM
• Initialize TIMER1 in timer

mode
• Initialize USART (serial

port)

Set up timer

Obtain reference
speed from PC?

Figure 3.12 Flow chart of microcontroller’s main program

Test PORTA.0 =1?

Check Noise

Test PORTA.0 =0?

Yes

Yes

Yes

No

No

No

 38

Call Delay 1ms

Figure 3.13 Flow chart of check noise function

3.3.1.1 Processing Explanation of Main Program

 There are six main parts of main program in microcontroller. There are

initialization of ports, PWM, Timer1, setup for serial port, get reference speed and

check noise function.

a) Initialization of the mode of ports A ,B

In this project, we use pin 0th of the Port A (RA0) as digital input where it

receives input (H/L) from LM324 (pin1). A user register, X1 has been defined as

speed counter for pulses receive from RA0. When the input of RA0 is High (H), it

will increase speed counter X1 where X1 = X1 + 1 (if it is not noise after check

noise, detail in section 3.3.1.1 (f)). Otherwise, the counter will remain its value.

Test PORTA.0 =0?

counter = counter + 1

Return

t > 1ms ? No

Yes

No

Yes

 39

All pins of Port B are set to output. RB1 is always set to High (H) and RB2

set to Low (L) to make the motor run in forward direction as describe in section

3.2.5.

b) Initialization of PWM

A PWM output (Figure 3.14) has a time-base (period) and a time that the

output stays high (duty cycle). The frequency of the PWM is the inverse of the

period (1/period).

Figure 3.14 PWM output

Figure 3.15 shows a simplified block diagram of the CCP module in PWM
mode.

Figure 3.15 Simplified PWM block diagram

To setup for PWM operation, the following steps should be taken when

configuring the CCP module for PWM operation:

i. Set the PWM period by writing to the PR2 register.

 40

ii. Set the PWM duty cycle by writing to the CCPR2L register and

CCP2CON<5:4> bits.

iii. Make the CCP1 pin an output by clearing the TRISC<2> bit.

iv. Set the TMR2 prescale value and enable Timer2 by writing to

T2CON.

v. Configure the CCP2 module for PWM operation.

The PWM period is specified by writing to the PR2 register. The PWM

period can be calculated using the following formula:

 PWM period = [(PR2) + 1] * 4 * TOSC *(TMR2 prescale value) (3.2)

 In this project, PR2 is set to 255(maximum value of 8 bit for maximum

range), so the PWM period is then become

PWM period = (255+1)* 4 * (1/20M) * (1)

 = 51.2µs

 = 19.53kHz

where Fosc = 20MHz and TMR2 prescale =1

The PWM duty cycle is specified by writing to the CCPR2L register and to

the CCP2CON<5:4> bits. Up to 10-bit resolution is available. The CCPR2L contains

eight MSbs and the CCP2CON<5:4> contains two LSbs. This 10-bit value is

represented by CCPR2L:CCP2CON<5:4>. The following equation is used to

calculate the PWM duty cycle in time:

PWM duty cycle =(CCPR2L:CCP2CON<5:4>)*TOSC* (TMR2 prescale value) (3.3)

CCPR2L and CCP2CON<5:4> can be written to at any time, but the duty

cycle value is not latched into CCPR2H until after a match between PR2 and TMR2

occurs (i.e., the period is complete).

 41

c) Initialization of TIMER1 in Timer Mode

The Timer1 module in PIC16F877A is a 16-bit timer/counter consisting of

two 8-bit registers (TMR1H and TMR1L), which are readable and writable. Figure

3.16 shows the Timer1 block diagram which operate in timer mode. The TMR1

Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh (decimal from 0

to 65535) and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on

overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt

can be enabled/disabled by setting/clearing TMR1 interrupt enable bit, TMR1IE

(PIE1<0>). Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In

this mode, the input clock to the timer is FOSC/4.

Figure 3.16 Timer1 block diagram

 When Timer1 increases from 0000h to FFFFh, it takes 65535 cycle and the

time consumed is given by,

 t = (65535 - 0) * (1/(20MHz/4)) ; Fosc = 20MHz

 = 13.107 ms.

 In this project, the interrupt is required to occur each 0.39321s where the

pulses counted in X1 will be converted to speed and correction taken. A user

register, X2 is defined as gain for this purpose.

 Gain, X2 = 0.39321s / 13.107ms

 = 30

Besides, the interruption enable bit of CCP2 is set. Also GIE and PIE are set.

 42

d) Setup for serial port

The Universal Synchronous Asynchronous Receiver Transmitter (USART)

module is one of the two serial I/O modules. (USART is also known as a Serial

Communications Interface or SCI.)

The USART is configuring in asynchronous mode. In this mode, the USART

uses standard non-return-to zero (NRZ) format (one START bit, eight or nine data

bits, and one STOP bit). The most common data format is 8-bits and it is used in this

project. An on-chip, dedicated, 8-bit baud rate generator can be used to derive

standard baud rate frequencies from the oscillator. The USART transmits and

receives the LSb first. The transmitter and receiver are functionally independent, but

use the same data format and baud rate.

 Baud Rate = Fsoc /(16(SPBRG+1)) (3.4)

Figure 3.17 USART transmit block diagram

Figure 3.18 USART receive block diagram

 43

To set baud rate at 9600bps, we have to set SPBRG as

SPBRG = (Fsoc/ Baud Rate / 16)-1

 = 20M / 9600 / 16 -1

 = 129

Bit SPEN (RCSTA<7>) is set as 1 and bits TRISC<7:6> are set as 0 in order

to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Asynchronous

Receiver Transmitter.

e) Get reference speed

 At beginning of the program, microcontroller will get the reference speed

from user at PC through RS232 serial communication. It will wait there until it gets

the reference speed from user.

f) Check Noise function

 From experimental result, if is found that there are some noise besides real

pulses from LM324, especially when motor running at high speed. This noise can

cause over reading pulses at speed counter, X1 if it is not filter out. From

experiment, it is found that the noise have a bandwidth less than 1ms (bandwidth of

real pulses always greater than 1ms). So, when a High (H) pulses is receive at RA0,

it will hold for 1ms. If the pulse detected still High (H), it means that the received is

real pulse and the X1 will increase it value with one. But if the pulse detected is Low

(L), then it is noise and ignored where X1 remains its value.

3.3.1.2 Processing Explanation of Interrupt Process

 Interrupt process is occurs each 0.39321s. The microcontroller will execute

the program in interrupt process instead of main program that is running when it

 44

receive the interrupt flag. Each part of interrupt process is discussed in the following

section.

a) Clearing of interruption flag

The interruption is occurs every 0.39321s with CCP2. The interruption flag

of CCP2 should be cleared first. When not clearing this, the following interruption

occurs without waiting desired time.

b) Speed counter

At each interruption (each 0.39321s), the value of speed counter, X1 will be

taken as detected pulses. From optical encoder with 4 slots that built in this project,

we know that it will produces 4 pulses when motor turn for 1 round. Data from

speed counter, X1 in microcontroller will be loaded to PC each 0.39321s. So, the

motor speed is given by,

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

t
1*

N
pulsesecteddetspeedecteddet (3.5)

where N = number of slots

 t = time of getting data in second

60
39321.0

1
4

pulsesecteddet

39321.0
1

4
pulsesecteddetspeedecteddet

∗⎟
⎠
⎞

⎜
⎝
⎛∗⎟

⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛∗⎟

⎠
⎞

⎜
⎝
⎛=

c) Error speed

The detected speed will be compared to reference s

between them.
round/s
 round/s

 (3.6))
round/minit (RPM
peed to calculate the error

 45

 Error pulses = Reference pulses – Detected pulses (3.7)

 and

 round/min60
0.39321

1
4
pulsesErrorspeedError ∗⎟

⎠
⎞

⎜
⎝
⎛∗⎟

⎠
⎞

⎜
⎝
⎛= (3.8)

 The error speed will then converted into error voltage by using Equation 4.2

from experiment with optical encoder that has been built.

16.207

89.80speedErrorvoltageError +
= (3.9)

 Finally, the error voltage will be converted to duty cycle based on Equation

2.17 to determine to speed up or slow down the motor. If there is no error, the duty

cycle of PWM is remained.

inV

voltageErrorDCError = where Vin = 12V (3.10)

d) Speed down process

 When the detected speed of the motor is higher than the reference speed, a

duty ratio is decreased and a motor drive electric current is suppressed. The rate that

the duty ratio becomes smaller is decided by error speed.

e) Speed up process

When the detected speed of the motor is lower than the reference speed, a

duty ratio is increased and a motor drive electric current is increased. The rate that

the duty ratio becomes bigger is decided by error speed.

 46

f) Send detected speed to PC

 To monitor the performance of the system, detected speed will sent to PC

each 0.39321s as detected pulses. This value will then convert to represent the

detected speed (rpm) in PC by using Visual Basic 6.0 program. (detail in section

3.2.3.1)

g) Interruption ending process

The RETFIE instruction is executed at end of the interruption processing.

Before that, the counter and timer have to clear and reset.

 47

Clear interruption flag

Gain = gain -1

Figure 3.19 Flow chart of microcontroller’s interrupt process

td = 0.39321s?

Get value of speed counter

Error > 0?

Ref = detect speed? DCnew = DCold + Error

DCnew = DCold - Error

Send the value of detected pulses to PC

Clear counter

Reset timer

Return from interrupt

Error = Ref – detect speed

No

Yes

No

Yes

Yes
No

 48

3.3.2 Programming in Visual Basic 6.0

In this project, a program will be developing using Visual Basic 6.0. This

program is able to send data (desired speed from user) to microcontroller and plot a

graph of detected speed versus time to monitor the performance of the system.

 There are two forms in Visual Basic 6.0. They are introduction form and

main program form which are shown in Figure 3.20 and Figure3.21 respectively.

Figure 3.20 Introduction form

Figure 3.21 Main program form

 49

The source code of this project is shown in Appendix B and the flow chart of

the program is shown in Figure 3.22. Two main tasks of the program in Visual Basic

which are reading input from user and microcontroller and plot a graph of speed

versus time.

3.3.2.1 Reading Input from User and Microcontroller

To obtain desired speed from user, the user is required to select a desired

speed at computer. The desired speed (rpm) will then convert into desired pulses

before send to microcontroller through serial port. From Equation 3.7, desired pulses

is given by,

60

39321.0*4*speeddesiredpulsesdesired = (3.11)

3.3.2.2 Plot Graph Speed versus Time

 To monitor performance of the system, a graph of detected speed versus time

will be obtained by using Visual Basic. The user will sent the desired speed to

microcontroller by click on Run command button. It is also allowed to get a new

graph by click on the New Graph command button.

 50

Start

Read selected
desired speed from

user?

Figure 3.22 Flow chart of program in Visual Basic 6.0

Send desired pulses
to microcontroller

No

Yes

desired pulses = desired speed / 60 * 4 * 0.39321

detected speed = detected pulses / 4 / 0.39321 * 60

Plot graph

Read detected
pulses from

microcontroller?

Stop motor?

No

Yes

No

Yes

 6

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

 Some experiments had been conducted for the project. First and foremost, an

experiment is conducted to find out the relationship between voltage supply and

motor speed. Then, data collection is done at each speed for DC motor speed control

system to observe performance of the system. Last but not least, an analysis on the

dead time of the system is made.

4.2 Experiment: Determine Relationship of Voltage Supply and Motor

Speed

An experiment is conducted to determine the relationship between voltage

supply and speed [14]. The procedures and the result will be discussed in following

sections.

DC
Motor

Power
Supply Tachometer

Figure 4.1 Experiment with tachometer

 52

4.2.1 Procedures

1) The circuit was connected as Figure 4.1.

2) Voltage of 0.5V was supplied to motor.

3) Value of rpm at tachometer was recorded in Table 4.1.

4) The voltage increased in steps of 0.5V until 16V and step 3 was repeated.

DC
Motor

Optical
Encoder

Oscilloscope Power
Supply

Figure 4.2 Experiment with optical encoder

5) Circuit as Figure 4.2 was completed by changing tachometer with the optical

encoder that has been built. The output waveform from optical encoder was

connected to oscilloscope.

6) Step 2 was repeated.

7) The readings for the frequency of oscilloscope were recorded.

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
N

60f
rpm out , N=4.

8) Step 4 was repeated.

9) A graph of rpm-voltage was plotted for both tachometer and optical encoder.

10) Based on graphs, both result was compared and the accuracy of optical

encoder that has been built is found.

 53

4.2.2 Experimental Result Analysis

 From experiment, the data was recorded in Table 4.1. A graph of speed

versus voltage supply by using tachometer and optical encoder is shown in Figure

4.3.

Table 4.1 Relationship of voltage supply and motor speed

Voltage
Supply (V)

Speed (rpm1)
Tachometer

Speed (rpm2)
Optical
Encoder

%100
rpm

rpmrpm
Error%

1

21 ×
−

=

0.0 0 0.00 0.00
0.5 0 0.00 0.00
1.0 100 99.60 0.40
1.5 240 230.06 4.14
2.0 330 315.79 4.31
2.5 410 420.21 2.49
3.0 550 553.51 0.64
3.5 640 655.02 2.35
4.0 770 767.26 0.36
4.5 860 854.70 0.62
5.0 970 940.44 3.05
5.5 1090 1048.95 3.77
6.0 1200 1164.60 2.95
6.5 1280 1258.39 1.69
7.0 1400 1358.70 2.95
7.5 1490 1467.71 1.50
8.0 1590 1552.80 2.34
8.5 1700 1648.35 3.04
9.0 1820 1794.26 1.41
9.5 1920 1870.32 2.59
10.0 2030 1968.50 3.03
10.5 2140 2074.69 3.05
11.0 2230 2228.83 0.05
11.5 2340 2272.73 2.87
12.0 2480 2400.00 3.23
12.5 2570 2516.78 2.07
13.0 2690 2617.80 2.68
13.5 2810 2702.70 3.82
14.0 2890 2840.91 1.70
14.5 2990 2958.58 1.05
15.0 3130 3048.78 2.59
15.5 3230 3131.52 3.05
16.0 3370 3232.76 4.07

 54

Graph Speed versus Voltage Supply

4000
Speed (rpm)

3500

Figure 4.3 Graph of speed versus voltage supply

The accuracy of the optical encoder can be checked by calculate its standard

deviation, s for percentage of error by using Equation 4.1,

1

)(2

−

−
=
∑

n

xx
s i

i

 (4.1)

 s = 1.2801

 The standard deviation percentage of error is quite small, so it can be

concluded that the reading of the optical encoder for speed measurement is quite

reliable which is given by,

 rpm = 207.16V -80.89 (4.2)

 where rpm = motor speed

 V = voltage supply to motor

y = 213.62x - 94.991

y = 207.16x - 80.89

0

500

1000

1500

2000

2500

3000

Optical Encoder

Tachometer

0.0 16.0 18.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Voltage Supply (V)

 55

4.3 DC Motor Speed Control Result

Microcontroller acts as proportional (P) controller in the DC motor speed

control system. At each speed, the result was collected by applying normal load,

overload and then suddenly the load was as no load condition (Refer Figure 3.11).

The performance of the system at each speed is shown in Figure 4.4 to Figure 4.10

respectively.

Overload

No Load

Normal
Load

Figure 4.4 DC motor running at speed 190.74 rpm

 56

No Load

Normal
Load

Overload

Figure 4.5 DC motor running at speed 572.21 rpm

No Load

Normal
Load

Overload

Figure 4.6 DC motor running at speed 762.95 rpm

 57

OverloadNormal
Load

No Load

Figure 4.7 DC motor running at speed 953.69 rpm

OverloadNormal
Load

Normal
Load

No Load

Figure 4.8 DC motor running at speed 1144.43 rpm

 58

No Load

Normal
Load Overload

Normal
Load

Figure 4.9 DC motor running at speed 1716.64 rpm

Normal
Load

No Load

Figure 4.10 DC motor running at speed 1907.38 rpm

 59

4.3.1 DC Motor Speed Control Result Analysis

For P controller, as the controller proportional gain, Kp is increased, the

response to set point changes becomes more oscillatory, commonly called

underdamped (Figure 4.14a). In this project, the speed response will give an

underdamped response when Kp=1.

At some greater gain, the response of the control loop becomes a steady-state

oscillation (Figure 4.11b). The system is called “marginally stable”. If the gain is

increased past the point where steady oscillation is observed, the control loop will

become unstable and the oscillations will increase in amplitude (Figure 4.11c) [15].

(a)

(b)

(c)

Figure 4.11 Types of oscillatory response: (a) underdamped (b) sustained
oscillation (c) unstable.

 60

From graph speed versus time for speed from 190.74 rpm to 762.95 rpm, the

controller is able to control the speed at their desired speed when applying normal

load and overload. Without controller, the motor will slow down or maybe die out.

Figure 4.12 Free body diagram of the disc

Tmotor – Tload = Jω (4.3)

where J = moment of inertia of the wheel about the axis of

rotation

 Tload = torque induced by load

 Tmotor = torque induced by voltage supply

 ω = speed motor

 Figure 4.12 shows a free body diagram of the disc [16]. Based on Equation

4.3, if the load is removed suddenly where Tload = 0, the motor will speed up before

Tmotor motor is changed (as seen in graph in no load condition). With controller, the

motor is able to maintain back to the desired speed in a period of time.

 For motor speed in the range of 953.69 rpm to 1716.64 rpm, the controller

can control at normal load but not in overload condition. In overload condition, the

speed response is oscillating until the load is removed. It is because Tmotor induced

by the voltage supply (maximum 12V) is not enough to overcome the Tload of

overload condition within these speed.

 Due to voltage limitation, the controller is unable to control the motor speed

although just apply with normal load for motor speed which is higher than 1907.38

rpm. The motor speed response will become oscillate and unstable.

 At each speed, there is a error speed of ±38.15 rpm when at the steady state.

This is due to over one count or miss one count pulse of the speed counter that sent

 61

by the optical encoder. Based on Equation 3.4, for one count pulse,N =1, the speed

is given by,

rpm15.38

60*
39321.0

1*
4
1speedcount1

=

=

4.4 Dead Time Analysis

 Dead time is the time of values of the quantity being measured for which it

gives no reading [17]. The motor that does not respond at very low input voltage

supply due to frictional forces exhibits nonlinearity. There is a dead time at each

speed. Figure 4.13 shows a graph of dead time versus motor speed.

Graph Dead Time versus Motor Speed

3.3

3.8

4.5

5

1.8

2.8

2
2.3

2.6
2.4

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Motor Speed (rpm)

Dead time (s)

Figure 4.13 Graph of dead time versus motor speed

 62

 From Figure 4.13, the dead time of the system is decreasing as the motor

speed is increasing. This is because for higher speed, the error speed at starting up

condition will be higher. So, more voltage will supply to motor to induce more Tmotor

to overcome frictional forces. Thus, the motor will start running earlier and the dead

time become smaller.

 6

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Recent developments in science and technology provide a wide range scope

of applications of high performance DC motor drives in area such as rolling mills,

chemical process, electric trains, robotic manipulators and the home electric

appliances require speed controllers to perform tasks. DC motors have speed control

capabilities, which means that speed, torque and even direction of rotation can be

changed at anytime to meet new condition.

The goal of this project is to design a DC motor speed control system by

using microcontroller PIC16F877A. It is a closed-loop real time control system.

The controller will maintain the speed at desired speed when there is a variation of

load. By varying the PWM signal from microcontroller (P controller) to the motor

driver, motor speed can be controlled back to desired value easily.

For this project, by applying Kp =1 to P controller in microcontroller, the

speed response become underdamped response. If Kp <1, the speed response is not

satisfied. At some greater gain, the speed response of the control loop becomes a

steady-state oscillation. If the gain is increased past the point where steady

oscillation is observed, the control loop will become unstable and the oscillations

will increase in amplitude. The motor will suddenly speed up and it will damage the

motor.

 64

In conclusion, with the Kp =1 for P controller at microcontroller PIC

16F877A, the motor speed response can be maintained at desired value although

there is a variation of load. The objective of the project is successfully fulfilled.

5.2 Problems

Although the controller can function as we expected, but the performance is

slightly sluggish where it takes about 2 or 3 second to react properly when there is a

disturbance especially at low speed. This is what we need to overcome in order to

achieve quick control of motor speed smoothly.

Besides, there is a constraint with the optical encoder that had been built.

Based on Equation 3.4, if we can increase the resolution of optical encoder by

increasing its number of slots, then the sensitivity of optical encoder can be

increased. So, the time for getting data and for microcontroller take correct action

will be reducing where t < 0.39321s. As a result, the controller can react faster when

there is a disturbance.

However, due to the size of photodiode which is quite big, the number of

slots at cardboard that can be used is only four. Otherwise, the light of the LED

cannot be blocked by the cardboard and photodiode will always give High (H)

output. Then, the speed sensor is fail.

5.3 Recommendation

 The performance of the system is slightly sluggish. For future works, some

recommendations have been listed based on the problems in order to improve the

performance.

 65

i. Mathematical modeling of motor response

Mathematical model can be obtained from the graph of motor speed response.

Then, from the mathematical model, it can be simulated using software such

as Matlab to get the improved motor speed response by using controller

packages such as PID controller, Fuzzy Logic Controller and others. Besides,

it will reduce the total hardware complexity and cost at the same time.

ii. Hardware Improvement

Use infra red (IR) as transmitter and receiver for optical encoder for more

narrow light. So, these will allow us to increase the resolution of optical

encoder by increasing the number of slots. Thus, it will reduce the steady

state error (based on Equation 3.4). Besides, time for getting data and for

controller to take action also can be reduced. So, the motor speed response

will become better.

iii. Software Improvement

Use fuzzy logic microcontroller which combine the idea of fuzzy logic in

microcontroller to obtain a DC motor speed control system with excellent

regulation and high robustness.

 66

REFERENCES

1. Muhammad H. Rashid. Power Electronics Circuits, Devices and

Applications. 3rd edition. United States of America: Prentice Hall. 2004.

2. Christopher A. Adkins and Michael A. Marra, Modeling of a Phase-Locked

Loop Servo Controller with Encoder Feedback. IEEE Spectrum, August

1999. 51-56.

3. Moore, A.W. Phase-Locked Loops for Motor-Speed Control. IEEE Spectrum,

April 1973. 61-67.

4. P. C. Sen and M. L. MacDonald. Thyristorized DC Drives with Regenerative

Braking and Speed Reversal. IEEE Transactions on Energy Conversion,

1978, Vol. IECI-25, No. 4: 347-354.

5. http://homepages.which.net/paul.hills/SpeedControl/SpeedControllersBody.ht

ml

6. Abu Zaharin Ahmad and Mohd Nasir Taib. A study On the DC Motor Speed

Control by Using Back-EMF Voltage. AsiaSENSE SENSOR, 2003, pg. 359-

364

7. Iovine John. PIC Microcontroller Project Book. 2nd Edition. Singapore: Mc

Graw-Hill. 121-123; 2000.

8. Lawrence A. Duarte. The Microcontroller Beginner’s Handbook. 2nd Edition.

United States of America: Prompt Publication. 3-5; 1998.

 67

9. http://www.airborn.com.au/rs232.html

10. MPLAB IDE, Simulator, Editor User’s Guide

11. Julia Case Bradley, Anita C. Millspaugh. Programming in Visual Basic 6.0.

Version 6. New York: McGraw-Hill/Irwin. 2002

12. http://www.seattlerobotics.org/encoder

13. http://www.microchip.com

14. Sistem Kawalan Halaju, Kertas Kerja Makmal Kawalan I

15. Sjhinskey, FG. Process Control Systems. 2nd Edition, Singapore: McGraw-

Hill Book Company, 2003.

16. Paraskevopoulos, P.N. Modern Control Engineering. New York: Marcel

Dekker, Inc. 2002.

17. Norman S. Nise. Control Systems Engineering. 2nd Edition. Redwood City,

California: The Benjamin/Cummings Publishing Company, Inc. 1995.

 68

APPENDIX A

Program in Microcontroller PIC 16F877A for DC Motor Speed Control

;===
; File name : psm.asm
; Project : Dc Motor Speed Control by Using Microcontroller PIC16F877A
; Programmer : EA AI CHOON
; Date : 27/1/2005
; Supervisor : MOHAMAD SHUKRI ABDUL MANAF
;===
 list p=16f877A ; list directive to define processor

 ERRORLEVEL -302
 ERRORLEVEL -305
 #include <p16f877A.inc> ; processor specific variable definitions

 __CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON &
_HS_OSC & _WRT_OFF & _LVP_ON & _CPD_OFF

;============= HARDWARE CONNECTION===========================
; Crystal - 20MHZ
; Capacitor - 22pF
; RB1(PIN34) & RB2 (PIN35) - CONNECT TO L298(H,L)
; CCP2 (PIN16) - CONNECT TO ENABLE L298
; RA0 as speed counter
;===

;===============MACRO CHANGE BANK ============================
BANK0 MACRO ;Change to BANK0
 BCF STATUS,RP0
 BCF STATUS,RP1
 ENDM
BANK1 MACRO ;Change to BANK1
 BSF STATUS,RP0
 BCF STATUS,RP1
 ENDM
;===
;Set up initialize value and cblock for the variables needed.

BAUD_RATE EQU 0X81 ;Set Baud Rate 9600 for 20MHZ for USART

Communication

CBLOCK 0X20
D1 ;For Delay
D2 ;For Delay
D3 ;For Delay
X1 ;For Counter
X2 ;For Gain
REFERENCE ;For Reference Speed
CHANGE ;For error correction
ENDC
;---

 69

 ORG 0x00
 GOTO MAIN

 ORG 0x04
 GOTO INT ;Interrupt Process

;--

;============== MAIN PROGRAM ===================================

MAIN BANK0
 CALL INIT ; Intialization
STANDBY CALL SERIALSCAN ; Get data for reference speed
 MOVF REFERENCE,W
 SUBLW 0X00
 BTFSC STATUS,Z ; Reference speed = 0?
 GOTO STANDBY ; Yes. Get data again
 MOVLW D'30' ; Set Timer1 as 30*13.107ms = 0.39321

 where X2 as gain
 MOVWF X2

;------------------------------- RA0 - AS SPEED COUNTER ---
LOOP BTFSS PORTA,0
 GOTO $-1
 CALL CHECKNOISE
 BTFSC PORTA,0
 GOTO $-1
 BTFSS PIR1,TMR1IF
 GOTO LOOP

;Check Noise function

CHECKNOISE CALL DELAY1 ;If bandwith is less than 1ms, then it is noise
 BTFSC PORTA,0
 INCF X1,1 ;Not noise, increase counter
 RETURN
;===

;##########################INITIALIZATION################################

INIT BANK0
 CLRF PORTA
 CLRF PORTB
 CLRF PORTC
 CLRF PORTD
 CLRF X1
 CLRF X2
 CLRF REFERENCE

 70

;---Initialize PORT----------------------------
 BANK1
 MOVLW 0x06
 MOVWF ADCON1 ;PortA as digital input
 MOVLW 0xFF ;PortA as input
 MOVWF TRISA

 MOVLW 0x00 ;Set PortB as output
 MOVWF TRISB
 BANK0
 BSF PORTB,1 ;RB1,RB2(pin 34 and 35) sambung ke

pin 10 dan 12 of L298
 BCF PORTB,2

;----Initialize PWM-----------------------------
 BANK1
 MOVLW 0xFF ;PWM Setup: Period KHZ(19.152KHZ)
 MOVWF PR2
 BCF TRISC,1
 BCF TRISC,2

 BANK0
 CLRF TMR2
 MOVLW 0X00 ;Duty Cycle = 0%
 MOVWF CCPR2L
 MOVLW 0x04 ;ON TMR2, PRESCALE = 1
 MOVWF T2CON
 MOVLW 0x0C
 MOVWF CCP2CON ;PWM Mode

;-----Set TIMER1 AS TIMER MODE------------------
 BANK0
 MOVLW 0X00
 MOVWF TMR1H ;Timer= 0000-FFFFH =

 ; 65535*1/(20M/4)=13.107ms
 MOVLW 0X00
 MOVWF TMR1L
 MOVLW b'00000001' ;Pre=1:1 TMR1=Int TMR1=ON
 MOVWF T1CON

 BANK1
 MOVLW b'00000001' ;TMR1IE=1
 MOVWF PIE1
 BANK0
 MOVLW b'11000000' ;GIE=1, PEIE=1
 MOVWF INTCON

;------Set up Serial Port-----------------------
SERIAL_SETUP: BANK1
 MOVLW 0XC0 ;RC6&7->Input,Others output
 IORWF TRISC,F ;Keep in file register

 MOVLW BAUD_RATE
 MOVWF SPBRG

 71

 MOVLW 0X24
 MOVWF TXSTA ;Enable transmission & high baud rate

 BANK0
 MOVLW 0X90
 MOVWF RCSTA ;Enable srial port & continuous reception

 RETURN

;######################## END OF INITIALIZATION##########################

;^^^^^^^^^^^^^^^^^^^^^^^^ SUBROUTIONE^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

;-----------Correction of Overrun Error--------------

OVERRUN_ERROR BCF RCSTA,CREN ;Disable continuous reception
 BSF RCSTA,CREN ;Enable continuous reception
 RETURN

;-----------Correction of Framming Error------------

FERR_ERROR MOVF RCREG,W ;Discard Framming Error
 RETURN

;----------Send the detect speed to PC-------------

SERIAL_TRANSMIT: BTFSS PIR1,TXIF ;Check if data TXREG is transfer

to TSR ->TXREG is empty
 GOTO $-1
 MOVWF TXREG
 RETURN

;-----------Get data for reference speed -------------------

SERIALSCAN CALL OVERRUN_ERROR ;Correction of Overrun Error
 CALL FERR_ERROR ;Correction of Framming Error
 BTFSS PIR1,RCIF ;Check if data receive
 GOTO $-1 ;Wait until new data

 MOVF RCREG,W ;Get received data to W
 MOVWF REFERENCE
 RETURN

;------------Short Delay---

DELAY1 MOVLW D'5' ;PAUSE FOR ABOUT 1mS
 MOVWF D3
 MOVLW D'9'
 MOVWF D2
 MOVLW D'36'
 MOVWF D1
 DECFSZ D1
 GOTO $-1

 72

 DECFSZ D2
 GOTO $-5
 DECFSZ D3
 GOTO $-9
 RETURN

DELAY2 MOVLW D'255' ;PAUSE FOR ABOUT 1mS
 MOVWF D3
 MOVLW D'255'
 MOVWF D2
 MOVLW D'36'
 MOVWF D1
 DECFSZ D1
 GOTO $-1
 DECFSZ D2
 GOTO $-5
 DECFSZ D3
 GOTO $-9
 RETURN

;^^

;*********************** INTERRUPT PROCESS******************************

INT CLRF PIR1 ; Clear interruption flag
 DECFSZ X2,F ; Haven't reach 0.799527s
 GOTO CONTINUE ; Continue counter

GETDATA MOVF X1,W ; Get value of counter,detect speed
 SUBWF REFERENCE,W ; Ref speed - Detect speed
 MOVWF CHANGE ; CHANGE = error correction

 BTFSC STATUS,C ; Reference < Detect ?
 GOTO GREATER ; No. Jump to > or = check

LESS MOVF CHANGE,W
 ADDWF CCPR2L,F ; Add duty cycle with error correction
 GOTO SHOWSPEED

GREATER BTFSC STATUS,Z ; Reference = Detect?
 GOTO SHOWSPEED ; Yes, no need correction.

MOVF CHANGE,W ; Detect speed > ref speed, decrease
 duty cycle with error correction

 SUBLW 0XFF; Convert the negative value to positive value
 SUBWF CCPR2L,F

SHOWSPEED MOVF X1,W
 CALL SERIAL_TRANSMIT
 CALL OVERRUN_ERROR ;Correction of Overrun Error
 CALL FERR_ERROR ;Correction of Framming Error

 CLRF X1 ;Reset Counter

 73

 MOVLW D'30' ;Reset Timer
 MOVWF X2

 CALL SERIALSCAN ; Get data for reference speed
 MOVF REFERENCE,W
 SUBLW 0X00
 BTFSS STATUS,Z ; Reference speed = 0?
 GOTO CONTINUE ; No, continue the process

STOPMOTOR MOVLW 0X00 ; Yes. Stop motor
 MOVWF CCPR2L
 CALL DELAY2

CONTINUE RETFIE

;******************** END OF INTERRUPT PROCESS*************************

 END

;-------------------------------------END OF PROGRAM--

 74

APPENDIX B

Source Code of Visual Basic 6.0 for DC Motor Speed Control Using
Microcontroller PIC 16F877A

Option Explicit
 Dim pulse As Integer 'Varible for desired_pulse
 Dim str As Variant 'Count pulse received from microcontroller
 Dim speed As Double 'Real speed
 Dim desired_speed As Double
 Dim Error_speed As Double
 Dim objExcel As Excel.Application ' Setup for OLE graph
 Dim wExcel As Excel.Workbook
 Dim xlchart As Excel.Chart
 Dim j As Integer

Private Sub cmdExit_Click()

 objExcel.Visible = True 'Exit the form and show the graph in Microsoft Excel

End

End Sub

Private Sub cmdNew_Click()

 'Clear the graph
 Workbooks("Speed2").Sheets("Sheet1").Range("A1:E1000") = ""
 j = 2
 OLE_Speed.Update
 Counter1.Value = 0
 Counter2.Value = 0

Counter3.Value = 0

End Sub

Private Sub cmdRun_Stop_Click()

 If cmdRun_Stop.Caption = "&Run" Then

 desired_speed = Val(cboSpeed.Text) ' Get desired speed from user
 pulse = Round(desired_speed / 60 * 4 * 0.39321) 'Convert the desired speed

 into desired pulse

 75

 If Val(cboSpeed.Text) > 0 Then ' If receive desired speed from user
 MSComm1.Output = Chr$(pulse) ' Send desired count pulse to

microcontroller
 lblPulse.Caption = pulse
 Counter1.TimerEnabled = True ' Start the counter as timer
 cboSpeed.Locked = True ' Lock the desired speed selection
 cmdRun_Stop.Caption = "&Stop"
 cmdExit.Enabled = False ' Disable the command of Exit and New Graph
 cmdNew.Enabled = False

 Else
 MsgBox "You must select a desired speed first!", vbOKOnly, "Invalid Data"
 ' If no desired speed receive from user
 MSComm1.Output = Chr$(0)
 cmdExit.Enabled = True
 cmdNew.Enabled = True
 End If

 ElseIf cmdRun_Stop.Caption = "&Stop" Then
 Counter1.TimerEnabled = False ' Stop the timer
 cmdRun_Stop.Caption = "&Run"
 pulse = 0
 MSComm1.Output = Chr$(0) ' Send speed = 0 rpm to stop the motor
 cboSpeed.Locked = False
 cmdExit.Enabled = True
 cmdNew.Enabled = True
 End If

End Sub

Private Sub Form_Load()

'MSComm setup

 With MSComm1
 .CommPort = 2 ' Use CommPort2 to communicate with

 microcontroller
 .Settings = "9600,N,8,1" ' Baud rate 9600, none parity, 8 data bits, 1 stop bit
 .InBufferSize = 1024 ' Receiver buffer = 1024 bytes
 .OutBufferSize = 1024 ' Transmitter buffer = 1024 bytes
 .DTREnable = True ' Enable the Data Terminal Ready signal
 .EOFEnable = False ' Disable the End of File type
 .Handshaking = comNone ' Disable all network handshaking
 .InputLen = 1 ' Read all the charater in buffer
 .InputMode = comInputModeText ' Set the incoming messages to ve ASCII text

 characters
 .NullDiscard = False ' Discard bytes that are all zero's
 .RThreshold = 1 ' Set the Receive Oncomm event to occur after 1

 byte of data have been received

 76

 .RTSEnable = True ' Enable the request to send data
 .SThreshold = 1 ' Set the Transmitter Oncomm event to occur after 1

 byte of data have been received
 .PortOpen = True ' Open CommPort
 End With

'Setup for excel file

 Set objExcel = GetObject("", "Excel.Application")
 Set wExcel = objExcel.Workbooks.Open("C:\Speed2.xls") ' File Speed2 as storage
 objExcel.Visible = False

j = 2

 With Workbooks("Speed2").Sheets("Sheet1")
 .Cells(1, 1) = 0
 .Cells(2, 1) = 0
 End With

 OLE_Speed.Update

End Sub

Private Sub MSComm1_OnComm()

 If MSComm1.CommEvent = comEvReceive Then
 ' This is used when data is received
 str = Asc(MSComm1.Input) 'Get the counter pulse from microcontroller
 lblCount_pulse.Caption = str
 speed = Round(str / 4 / 0.39321 * 60, 2) ' Convert counter pulse into speed(rpm)
 Error_speed = Round((speed - desired_speed), 2) ' Calculate the error between

 detected speed with the
 desired speed

 lblSpeed.Caption = speed
 lblError.Caption = Error_speed
 MSComm1.Output = Chr$(pulse) 'Always send desired pulse to microcontroller
 End If

 If Counter1.Value > 0 Then
 If (Counter3.Value * 60 * 60) + (Counter2.Value * 60) + Counter1.Value >
Workbooks("Speed2").Sheets("Sheet1").Cells(j - 1, 1).Value Then

 'Plotting graph
 With Workbooks("Speed2").Sheets("Sheet1")
 .Cells(j, 1) = (Counter3.Value * 60 * 60) + (Counter2.Value * 60) +

 Counter1.Value
 .Cells(j, 2) = Format(speed, "##.##")
 .Cells(j, 3) = desired_speed

 77

 End With

 j = j + 1
 OLE_Speed.Update ' Update the graph
 End If

 End If

 'Timer : Counter1 as second, Counter2 as minute, and Counter3 as hour

If Counter1.Value = 60 Then

 Counter2.Value = Counter2.Value + 1
 Counter1.Value = 0
 Counter1.TimerEnabled = True
 If Counter2.Value = 60 Then
 Counter3.Value = Counter3.Value + 1
 Counter2.Value = 0
 End If

 End If

End Sub

	3 title page.pdf
	3 title page.pdf
	MARCH 2005

	Thesis EAC (2005)-3.pdf
	CHAPTER
	TITLE
	PAGE
	DECLARATION OF THESIS
	ii
	DEDICATION
	iii
	ACKNOWLEDGEMENT
	iv
	ABSTRACT
	v
	ABSTRAK
	vi
	TABLE OF CONTENT
	vii
	LIST OF TABLES
	x
	LSIT OF FIGURES
	xi
	LIST OF SYMBOLS
	xiii
	LIST OF APPENDICES
	xiv
	1
	INTRODUCTION
	1.1
	Background
	1
	1.2
	Objective of Project
	2
	1.3
	Scope of Project
	2
	1.4
	Outline of Thesis
	2
	1.5
	Summary of Works
	3
	2
	5
	5
	6
	6
	7
	8
	11
	12
	13
	14
	17
	18
	20
	20
	3
	22
	23
	24
	24
	27
	28
	30
	30
	32
	34
	36
	36
	38
	43
	48
	49
	49
	4
	51
	51
	52
	53
	55
	59
	61
	5
	63
	64
	64
	66
	68
	TABLE
	TITLE
	PAGE
	2.1
	Types of DC Motor and their advantages and disadvantages
	6
	2.2
	RS232 pin assignments (DB9 PC signal set)
	19
	3.1
	Specification of the motor
	24
	3.2
	Pin connection of PIC16F877A for DC motor speed control syst
	29
	3.3
	Pin function of chip L298
	32
	4.1
	Relationship of voltage supply and motor speed
	53
	FIGURE
	TITLE
	PAGE
	1.1
	Project overview
	3
	1.2
	Gantt Chart of the project schedule for semester 1
	4
	1.3
	Gantt Chart of the project schedule for semester 2
	4
	2.1
	Sample disc of encoder
	7
	2.2
	Basic schematic circuit of optical encoder
	8
	2.3
	9
	2.4
	11
	2.5
	11
	2.6
	12
	2.7
	2.8
	2.9
	15
	2.10
	16
	2.11
	2.12
	3.1
	22
	3.2
	23
	3.3
	24
	3.4
	26
	3.5
	27
	3.6
	27
	3.7
	29
	3.8
	NRZ (Non Return to Zero) format data
	30
	3.9
	Connection between D9 Female serial port, MAX232 and PIC16F8
	31
	3.10
	Bi-direction of DC motor speed control
	33
	3.11
	Application of vary load by using Loading Unit LU150L
	35
	3.12
	Flow chart of microcontroller’s main program
	37
	3.13
	38
	3.14
	39
	3.15
	39
	3.16
	41
	3.17
	42
	3.18
	42
	3.19
	47
	3.20
	48
	3.21
	48
	3.22
	50
	4.1
	51
	4.2
	52
	4.3
	54
	4.4
	55
	4.5
	56
	4.6
	56
	4.7
	57
	4.8
	57
	4.9
	58
	4.10
	58
	4.11
	59
	4.12
	60
	4.13
	61
	-
	A constant based on motor construction
	-
	Magnetic flux
	-
	Field current
	-
	Armature current
	-
	Field resistor
	-
	Field inductor
	-
	Armature resistor
	-
	Armature inductor
	-
	Motor constant
	-
	Torque constant
	-
	Developed torque
	-
	Load torque
	-
	Viscous friction constant
	-
	Inertia of the motor
	-
	Motor speed
	-
	Firing angle of thyristor
	-
	Time ON of switches
	-
	Period
	-
	Standard deviation
	-
	Rotation per minute
	APPENDIX
	TITLE
	PAGE
	A
	68
	B
	74
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	REFERENCES

